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1 First Component

Given: Consider a crane that moves along an one-dimensional track. It behaves as a friction less
cart with mass M actuated by an external force F' that constitutes the input of the system. There
are two loads suspended from cables attached to the crane. The loads have mass m1 and m2, and
the lengths of the cables are [1 and [2, respectively. The following figure depicts the crane and asso-

ciated variables used throughout this project.

xT displacement

F_[ 'y

Figure 1: Given System

1.1 Equations of Motion

To find the equations of motion of the system, we have used the Euler-Lagrange’s method. The first
step of which was to get the position the three masses present in the system, with respect to dis-

tance and the angles of the pendulum.
For the first mass, i.e M, the position is

Position of mass M = (x,0)
And to calculate the position of mass m; and ms, we find the z and y components of the posi-

tion as shown below.
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Figure 2: Positions components for the mass mq
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T displacement

Figure 3: Position components for the mass mo

Hence, their positions can be given as,

Position of mass my = (x — Iy sin 6y, —1; cos ;)

Position of mass my = (x — I3 8in s, —ls cos 0)

From the above equations, the velocities of the masses can be calculated by derivating the posi-
tion components with respect to ¢, as shown below,

Velocity of mass M =V, = (%,0)
Velocity of mass m; =V, = (w — 1160y cos 0y, 116, sin 91>
Velocity of mass mg =V, = (x — 15605 cos 0, l50, sin 92)

To find the kinetic energy of each mass, we use the formula %mvz Which gives us,

1 1
Kinetic Energy of mass M = K.Fy = §MV2 = iMzic2

1 1 . .

Kinetic Energy of mass m; = K.FEy = §m1Vn%1 = §m1 <:'E2 + l%@% — 21116 cos 01>
1 1 ) .

Kinetic Energy of mass my = K.E3 = §m2Vn212 = §m2 (:'E2 + l%ﬁg — 2l5105 cos 92)

To find the kinetic energies of the masses, we used the formula mgh, and we get,

Potential Energy of mass M = P.F; =0
Potential Energy of mass my = P.Es = —mqgl; cos 6

Potential Energy of mass my = P.E3 = —mogls cos 05
The Lagrangian is calculated as:
L=K-P
L=KFE +K.FEy+ K.E3s— (P.Ey+ P.Ey+ P.Es)
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Substituting the values of energies calculated, we get,

L (1[,’, 01, 92) :5 1.52 (M +mq + mg) + mll%Gf + mﬂ%@%} — m111:b91 COS 01 - mglgfﬂgg COs 02
4+ mygly cos By + magls cos O

To get the equations of motion, we use the following,
d oL 0L
dt 0q¢;  0¢;
Where q is a generalized parameter, which are x, #; and 05 for us. Hence to get the first equa-
tion of motion, we use the x, which gives us,

% =z (M +mq + m2) — mlllél cos b — mglgég cos 05
d oL . .. . .. .
pri T (M +mq +m2) —mily (91 cosfy — 9% sm91) — maly (02 cos By — 93 sm92)
oL
Er 0

Fr=(M+mi+ma)d —mily (91 cos b1 — 9% sin@l) — mala (92 cos bty — 0% sineg)

Next, the second equation of motion is calculated using 6; as,

ai.ﬁ = mllfél — mlllx' [¢0)5] 01

1

d oL
dt 96,
oL
26,

F2 = mll%él — mlllfv' COS 01 + m1911 sin 01

= mllfél — mlll (I COS 01 — onl sin 91)

= mlllfcél sin 01 - mlgll sin 91

and the third equation of motion is,

(‘iﬂi = mglgég — mglg.’i} COS 92

d oL
dt 96,
oL

005

F3 = m2l§é2 — malad cos By + nglz sin 6o

= mglgég - m2l2 (.13 COSs 92 — .1392 sin 92)

= mglgx'ég sin 02 — mgglg sin 92

Now, as the only force acting on the system is in the x direction, hence the other forces would

be 0, which means,
F=F
F,=F;=0
Which gives us,
F=(M+mi+me2)d—mly (01 cosfy — 9% sin 91> — Mals (92 cos By — 0% sin 92> (1)
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0= mllfﬁl 7m1l1i’C0891 +mlgll sin91 (2)

0= mglgég — malaZ cos By + magls sin Oy (3)

From equations |2| and |3 we get the equations of 6, and 6, as such,

0, = ll (Zcosfy — gsinby) (4)
1

; 1. .

Oy = o (% cosby — gsinby) (5)
2

Substituting the values of 01 and 02 in equation |1} we get

. . . £ 2 . £ 2
. F —mygsinf; cosf; — magsinbs cosls — mqlysinf10; — mols sin 656,
xr =

M +my + my — mq cos? 0; — me cos? O,

Using the above calculated value of , and substituting in equations [4] and |5, we get

.. 1 F —mygsin6; cos 01 — mogsin 5 cos 8y — mqly sin 91912 — mals sin 92922 .
d, = cos 1 — gsin 6,
M +mq + ma — my cos? ; — ma cos? 0y

(6)

.2 )
i 1 F —mygsinf; cos 01 — mogsin by cos Oy — myly sinf1607 — mals sin 6265 0 -
= cos fy — gsin
2 M+m1 +m27m1C082917m2C08292 2 g 2

(7)

1.2 Linearization of the system in state space form

Now we begin to linearlize our system in order to represent in standard state space representation.
Before representing in the state space form we need to make some assumptions i.e the angles 6; and
05 are considered to be small and the following higher order derivatives will be closer to zero. We
are linearizing our system by following this approximation.This approximation is called as small an-
gle approximation. These can be seen below :

sinf; ~ 6,
sin 6y ~ 6y
sin#? ~ 0
cost; ~1
cosf; ~0

cosf? ~ 1

%sinﬁzo

%0050:0

Now by substituting the above results in the above equations we get the below results:
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. 1

E=47 [F'— g (m161 + m262)]
5o 1 [F—g (m191 + m292)
th = I { i 991]
o 1 F — g (m191 + m292)
0y = E { M g0

We check the equilibrium condition by considering the given conditions x = 0, #; = 0 and 6, =
0.In order to represent our linearized system in state space representation we take state variables
such that it covers all the dynamics of the system.

The below state variables are being considered to represent our state in state space representa-
tion.

X(t) =

We use the above equations , equilibrium conditions and our state variables to formulate the
state space representation which is provided below :

T 0 1 0 0 0 0 T 0

Z 0 0 —gt 0 —g 0 @ i

01 0 0 0 1 0 0 01 n 0 )
A = m m ) U
b, 00 —f(l+5) 0 —f5 0|6 R

02 0 0 0 0 0 1 02 0

il Lo w0 —paes o) lal Lo

The above system is in the form of

X(t) = AX(t) + Bu(t)Y (t) = Cx () + Du(t)

Here X (t) and wu(t) are column vectors, A and B are matrix representing the dynamics of the
system. ]
X(t) = AX(t) +Bu(t)
6x1 6Xx1 6X1
A —sx6 Matrix which constiutes all the dynamics of the system.
B —sx1 Matrix which constitutes all the input variables
X (t) —ex1 It consists the state variables
u(t) —ix1 It is the input given to the cart i.e F
C —ox1 Identity Matrix
D - 6x1 Zero Matrix

The u(t) is the force F exerted on the cart.

1.3 Controllabilty of the linearized state space system

Considering our linearised state system, we now check for the controllabilty of the system.
We have different methods to check the controllabilty of a system, but here we go with the PBH
test ( Popov Belevitch Hautus ) which tells us whether a system is controllable or not.
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The PBH test is provided below:
[(AM — A) | B] (8)

We find the rank of the eq:11 jand if the rank is a full rank then the system is considered to be con-
trollable else it is not controllable if the rank is less than 'n’.

A - These are the eigen values of the A

I - Identity matrix

n - The full rank of the system ( in our system it is 6 as we have six linearly independent columns)

The system is said to be controllable VA € C.Given that all the load mass, lengths of the cables
are greater than 0.

M,ml,mg,ll,lg >0

A -1 0 0 0 0 |
0 by 91\71 g;jm 0
N 0 0 A —1 0 0
— = (M+mq) m
0 0 ’ M1y - A ?\4lf 0
0 0 0 0 A 1
1 M+m
I 0 0 ?\/IMZIQ 0 g(Ml2 2) >\ |

Now we do the PBH test to find the rank of the below matrix. We found out the rank of this
system is 6, which implies that the system is controllable.

A =1 0 0 0 0 0

0 A 4 0 s 0 ﬁ
(M — 4) | B] 0 0 A -1 0 0 0

— = M+m
0 0 g(Mtl = A EIZ\/IWZL? 0 M1l1
0 0 0 0 A -1 0
m M+m
L 0 0 ?\452 0 g(Mlz = A ﬁ i

We now find the rank of the controllability matrix to check for controllability . The control-
lablity matrix C is given below:

C=[B AB A2B AB A*B A°B]

We first check the determinant of this matrix and deduce the conditions for the variables where
the system cannot be controllable.
The determinant of the controllabilty matrix is given below.

g8 (1% = 211 Iy + 15?)

det(C) = — V5 15L,0

As we can see that the if the determinant of C is zero , the system is not controllable. Now we equate
the determinant of C to zero and find the condition where the system is uncontrollable, which can
be found out by,

l12—2l1l2—|—122 =0org=0

As g cannot be zero, the above matrix will have a zero determinant only when /1 = [2
Hence, the controllability condition is that

11412
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1.4 LQR( Linear Quadratic Regualtor )

Now we design a LQR Controller with the given variables. M = 1000Kg, m1 = m2 = 100Kg, 11 =
20m, 12 = 10m and g = 9.8.We substitute all the variables in our state space system which is given

below:

@ 0 1 0 0 0 0 T 0
z 00 - 1908010 0 - 1908010 0 z 10100

01 0 0 1 0 0, I 0 u(t)
) = 10791 981 ) 1

‘9,1 0 0 —55000 O —30000 O 01 20000

0o 0 0 0 0 0 1 02 0

- 981 10791 ; 1

02 00 — 10000 0 - 10000 0 02 10000

Now we find the eigen values of the the A matrix to check for stability which are given below:
.0000 + 1.0430¢
0.0000 + 1.0430:
—0.0000 + 0.7285:
—0.0000 — 0.7285¢
0.0000 + 0.0000z

0.0000 4+ 0.0000z
As we can see from the above equation , we have zero values for the real part which implies the

eig(A) =

system is stable.
Now we check the controllabilty of the system by finding the rank of C.

C=[B AB A2B A3B A*B A°B]

0 ﬁ 0 - 10(1)3800 0 1033(1)(6)(5)800

101W 0 - 10(1)3(7)00 0 10(1)3(1)8(5)800

0 1 0 637 0 453789
C = 1 20800 e 200000000 153789 20000000000

T om0 im0 o

1 0 1127 0 1246119

10000 10000000 10000000000

We find that the rank of the Controllability matrix which we found to be a full rank i.e 6 which

implies that the system is controllable.
After verifying that the system is controllable we now implement LQR. controller for our lin-

earized system by first finding the optimal cost function using ricartti equation.
The cost function for the LQR controller is given below :

J(K,X(0)) = /0 h (XTQX + u" Ru) dt

We optimize our cost function by choosing QQ and R matrix which will provides us the optimal

solution.
The ricatti equation is provided below where we will use this equation to find the P matrix

which is later used to find the gain matrix K.

P-A+ATP - PBR'BTP=—-Q

Now we use our gain matrix and find the state feedback equation for our system as given below:

u(t)=-KX(t)=— (R 'B"P) X(t)

After implementing the LQR controller to our linearlized system with the initial response, we
get the the following eigen values by choosing Q matrix as a identity 6 X 1 matrix. First we find out
the ouput response of the non-linear system.
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5
X
4r v
thetal
A angular1 | 7
theta2
2r angular2 |
1

States
o

5 . . L . L L L L .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

Figure 4: Non-Linear system with initial Q and R

We set the Q and R matrix values and then use the lqr solver to solve for the K gain matrix.
We get the following K gain matrix

100
497.72
—76.60
K= 55175
—34.66
| —279.45
1 0 0 0 0 0
010000
001000
Q1o 00100
000010
000001
R=1

Kindly refer fig.4 for the output of this system with the above Q,R and K matrix. We find the
eigen values for the linearized system and check for controllability which is given below:

[ —0.0090 + 1.0416: |
—0.0090 — 1.0416¢
—0.0055 + 0.72731
—0.0055 — 0.7273¢
—0.2067 + 0.20244
—0.2067 — 0.2024¢

As we can see all the eigen values of the A matrix lies in the left plane of the real axis which
signifies that the system is stable.
Now we again iterate over different values for Q and R matrix in order to decrease the oscilla-

tions and the time required to reach the desired state. We have choosen the below values for the Q

and R matrix to get the optimal solution.

Eig(A - By K)=
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20
X
15 &
thetal
angular1
10 theta2
angular2
5|
0
@D
B0 s
0
5}
-10
-15
-20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

Figure 5: Non-Linear system with optimized Q and R

5 0 0 0 0 0
0 1000 0 0O O O
|00 10 0 0 O
Q= 0 O 0 10 0 O
0 O 0 0 10 O
0 O 0 0 0 1

R =0.01

The gain matrix we got after calculating it using the ricatti equation ( lqr method in MATLAB)
is given below :
.3162
1.0151
2.2875
0.8244
0.3704
—0.3868
Kindly refer fig.5 for the output of this system with the above Q,R and K matrix.
—0.0090 + 1.0416:
—0.0090 — 1.0416:
—0.0055 + 0.7273¢
—0.0055 — 0.72734
—0.2067 + 0.20241
—0.2067 — 0.20241
We have reached a optimum state after several trials with the values of Q and R. We found that
our values reach the desired state at t = 1000s.Using this lqr controller we have minimized our cost
function to get a optimal solution rather than a best solution.
Linearized system output results for LQR controller The initial Q and R matrices for the LQR
controller.

K= 1.0e+03 *

Eig(A - By K)=
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Response to Initial Conditions

\ j o /\/\L T
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]
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=]

IE/l'F ‘\‘;I‘.\.‘;lll{\“'\.\f\}fm:%m:.,‘/.hw:‘-..._‘,..—m_uﬂ“u"m..m...:.._.m-.__._ -.__I_____ = _i

0 20 40 60 80 100 120
Time (seconds)

Amplitude
To: Qut(6)o: Out(Sj)rO, Oul(45r0: Out(3To: Out(2Jo: Out(1)

A=
oooo

Figure 6: Linear system with initial Q and R

1 00000
010000
001 000

Q=1 0010 0
000 O0T10
000001

R=1

The optimal R and Q matrices have found after tuning these values to get the optimal result.
[10 0 0 0 0 0
0 5 0 0 0 0
|0 0 1000 O 0 0
Q= 0 0 O 1000 0 O
0 0 O 0 100 0
0 0 O 0 0 10
R =0.0001
We have tuned the values and verified its stability using the eigen values of A - By K matrix.
We have also simulated our response with linearized system and produced the results above.
By using the lyapunov indirect method stability method , we can check if a system is stable or
not based upon the eigen values or poles of the system. If the system which is linearized and is sta-
ble at the equillibrium condition then the non-linear state will also be stable locally about the equil-
librium point.
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Response to Initial Conditions

Amplitude
To: Qut(6fo: Out(5To: Out(4fo: Out(3Yo: Out(2fo: Out(1)
S

I

4 5 6 7 8 9
x10%

o
-
[\S]
[t

Figure 7: Linear system with optimal initial Q and R

2 Second Component

Until now we have formulated our system’s controller to optimize the cost function and to find a
desired K gain matrix which will take my state to the desired position. Now we are intended to find
a LQG controller where we estimate our own states and feed it to the gain controller to output a
optimal solution.
First we find the observability of the below output vectors x(t), (1(t),2(t)), (x(t),2(t)) and (x(t),1(t),2(t)).
To find the observability of the output vector we use the below matrix:
C
CA
CA?
CA3
CA*
CA>
We have checked the observability for the above output vectors and the results are provided be-
low:

(1.0 0 0 0 0]
Cil=({ 0 0 0 0 0 O
L0 0 0 0 0 0 |
[0 0 0 0 0 0]
C2=|10 0 1 0 0 O
10 0 0 0 1 0|
[1. 0 0 0 0 0]
C3=({0 0 0 0 0 O
100 0 0 1 0]
(1.0 0 0 0 0]
C4=( 0 0 1 0 0 O
0000 1O
The Matlab code for finding the observability can be seen below:
clc
clear
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disp("Question E")
syms M m1 m2 11 12 g;

A=[0 1 0 0 0 O;

0 -(mlxg)/M 0 -(m2*g)/M 0;

0010 0;

0 -((M+m1)*g)/(M*11) 0 -(m2x*g)/(Mx11) O;
0000 1;

0 -(ml*g)/(M*12) 0 -(g*x(M+m2))/(M*12) 0];

O O O O O

B=[0; 1/M; 0; 1/(M*11); 0; 1/(Mx12)];

Ct=[100000];

c2=[001000; 0000 10];
C3=[100000; 0000 10];
C4=[100000;001000; 000010];

01 = [C1l; C1x%A; C1xA~2; C1%*A~3; C1xA~4; C1xA"5];
rank(01)

02 = [C2; C2%A; C2xA~2; C2%A~3; C2xA~4; C2*A~5];
rank (02)

03 = [C3; C3%A; C3%xA~2; C3%A~3; C3%A~4; C3%A~5];
rank (03)

04 = [C4; C4xA; C4%xA~2; C4xA~3; C4xA~4; C4xA~5];
rank (04)
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2.1 Luenberger Observer

We are now going to use the above observer in order to estimate our states.
The state space representation of the Luenberger Observer is given below:

X=AX + Bu+ L(Y - V)

The estimation error for the luenberger observer is e = X — X.

X(t) = AX + BU

Now we find the state space representation for the estimation error.

=X X =(AX +BU)— (AX + BU+L(Y - V) =AX - AX — L(CX — CX) = (A~ LO)e

After simulating the Leunberger observer for the given system, using the provided output vec-
tor, we were able to optimize the observer for the three observable systems for corresponding output
vectors. Following initial condition and unit step responses of the system were simulated.
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Figure 8: Linear System for Question F

2.2 Appendix
Please refer to the |Github Repository:
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https://github.com/karanamrahul/Control-of-Double-pendulum-using-LQR-and-LQG

2.3 Question C FINAL PROJECT
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2.3 Question C

clc
clear

disp("Question C")
syms M m1 m2 11 12 g;

A=[0 1 0 0 0 0;

0 -(mixg)/M 0 -(m2*g)/M 0;

0010 0;

0 -((M+m1)*g)/(M*11) 0 -(m2*g)/(Mx11) O;
0000 1;

0 -(mixg)/(Mx12) 0 -(g*x(M+m2))/(M*12) 0];

O O O O O

B=[0; 1/M; 0; 1/(Mx11); 0; 1/(Mx12)];

% Ctrl = ctrb(A, B)

Ctrl = [B A*B (A"2)*B (A"3)*B (A"4)*B (A~5)*B];
disp("The rank of the controllability matrix is:")

rank(Ctrl)

disp("The determinant of the controllability matrix is:")
disp(det(Ctrl));

lamda = eye(6,6) * sym(’lambda’);

A_1bd

[lamda - A B];

rank(A_1bd);

2.4 Question D

clc
clear
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2.4  Question D FINAL PROJECT
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disp("Question D")
syms M m1 m2 11 12 g;
A=[0 1 00 0 0;
0 0 —(m1xg)/M 0 —(m2*g)/M 0;
00010 O0;
0 0 -((M+m1)*g)/(M*x11) 0 -(m2xg)/(M*11) O;
000O0O0T1;
0 0 -(mlxg)/(Mx12) 0 -(g*(M+m2))/(M*12) 0];
A = double(subs(A, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));
B=[0; 1/M; 0; 1/(Mx11); 0; 1/(Mx12)];
B = double(subs(B, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));

ctrb(A, B)

% Ctrl =
= ([B A*B (A"2)*B (A"3)*B (A~4)*B (A"5)*B]);

Ctrl
disp("The eigen value of the controllability matrix is:")
eigs(double(A))

disp("The rank of the controllability matrix is:")
rank(Ctrl)

lamda = eye(6,6) * sym(’lambda’);

A_1bd

[lamda - A B];
rank(A_1bd);
intial_state = [5;0;10;0;20;0];

Q=[10 0 0 0 O O;

05000 0;
0 0 1000 O 0 0;
0 0 0 1000 0 O;
0000 100 0;
000O0O0 10];
R = 0.0001;
C = eye(6);
D = 0;

sys_rep = ss(A,B,C,D);

K_val = 1qr(4,B,Q,R);
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2.5 Question D - non linear FINAL PROJECT
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sys_rep_k = ss(A-BxK_val,B,C,D);
eigs(A-B*K_val)

figure
initial(sys_rep_k,intial_state)

2.5 Question D - non linear

clear
clc

M=1000;
ml1=100;
m2=100;
11=20;
12=10;
g=9.8;

A=[0 1 0 0 0 O;
0 0 -(nixg)/M 0 -(m2*g)/M O;
00010 0;
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2.5 Question D - non linear FINAL PROJECT
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0 0 -((M+m1)*g)/(M*x11) 0 —(m2*g)/(Mx11) O;
00000 1;
0 0 -(mlxg)/(M*12) 0 -(g*x(M+m2))/(Mx12) 0];

B=[0; 1/M; 0; 1/(Mx11); 0; 1/(Mx12)];

% Q=[10 0 0 0 O O;
yA 0 100 0 0 O O;
yA 000 10 0 0O;
yA 0 100 0 O;
b 0 10 0;

0

0
0
0
% 0 0 100007 ;

O OO O O -
OO P OO O O OO
O, O O O O o O

initial_x = [2; 0; pi/6; 0; pi/4; 0];
tspan = 0:0.1:5000;

rank(ctrb(4,B))

[K_val, ~, "1 = 1qr(A,B,Q,R);

F=0(x)-K_valx*x;
eigs (A-B*K_val)

[final_t, final_x] = ode45(@(t, x)cart_system(x, M, ml, m2, 11, 12, g, F(x)), tspan, initial_x);
plot(final_t, final_x)

ylim([-5, 5])

xlabel("time");

ylabel("States")

legend(’x’, ’v’, ’thetal’, ’angularl’, ’theta2’, ’angular2’)

function dx = cart_system(x, M, ml, m2, 11, 12, g, F)

dx=zeros(6,1);

dx(1) = x(2);

dx(2)=(F-(g/2) * (m1*sind (2*x(3) ) +m2*sind (2*x(5)) ) - (m1*11*(x(4) "2) *sind (x(3))) - (m2*12* (x(6) "2) *sind (x (&
dx(3)= x(4);

dx(4)= (dx(2)*cosd(x(3))-g*(sind(x(3))))/11°;

dx(5)= x(6);
dx(6)= (dx(2)*cosd(x(5))-g*(sind(x(5))))/12;
end
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2.6 Question F - linear FINAL PROJECT
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2.6 Question F - linear

clc
clear

disp("Question F")

syms M m1 m2 11 12 g;

A=[0 1 00 0 0;
0 0 -(ml*g)/M 0 -(m2*g)/M 0;
00010 0;
0 0 -((M+m1)*g)/(M*x11) 0 -(m2xg)/(M*11) O;
00000 1;
0 0 -(ml*xg)/(Mx12) 0 -(gx(M+m2))/(M*12) 0];

A = double(subs(A, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));
B=[0; 1/M; 0; 1/(M*11); 0; 1/(Mx12)];
B = double(subs(B, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));

% Ctrl = ctrb(A, B)
Ctrl = ([B A*B (A~2)*B (A~3)*B (A~4)*B (A~5)*B]);

C1=[100000; 0O00000;00000 0];
C2=[001000; 000010;00000 0];
C3=[100000; 000010;000000];
C4=[100000;001000; 000010];
D = 0;

Q=[10000 0 0 0 O O;
0 1000 0 0 0 O;
0 0 100 0 0 O;
100 0
1000
0 100

>

o O O
o O O
o O O
o O

’

0;
]
R = 0.001;
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2.7 Question G - Linear FINAL PROJECT
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new_poles=[-0.1;-0.3;-0.5;-0.7;-0.9;-1.1];
K=1qr(4,B,Q,R);

x_initial = [0, O, pi/4, 0, pi/3, 0, 0, O, 0, 0, O, 0];
Luenberger_B = [B;zeros(size(B))];

L1 = place(A’,C1’,new_poles)’;
Luenberger_A1l = [(A-B*K) BxK;
zeros(size(A)) (A-L1xC1)];
Luenberger_C1 = [Cl zeros(size(C1))];
sys_repl = ss(Luenberger_A1l,Luenberger_B,Luenberger_C1,D);
figure
initial(sys_repl,x_initial)
figure
step(sys_repl)

L3 = place(A’,C3’,new_poles)’;
Luenberger_A3 = [(A-B*K) BxK;
zeros(size(A)) (A-L3*C3)];
Luenberger_C3 = [C3 zeros(size(C3))];
sys_rep3 = ss(Luenberger_A3,Luenberger_B,Luenberger_C3,D);
figure
initial(sys_rep3,x_initial)
figure
step(sys_rep3)

L4 = place(A’,C4’ ,new_poles)’;
Luenberger_A4 = [(A-B*K) B*K;
zeros(size(A)) (A-L4xC4)];
Luenberger_C4 = [C4 zeros(size(C4))];
sys_rep4 = ss(Luenberger_A4,Luenberger_B,Luenberger_C4,D);
figure
initial(sys_rep4,x_initial)
figure
step(sys_rep4)

2.7 Question G - Linear

clc
clear

disp("Question G")
syms M m1 m2 11 12 g;
A=[0 100 0 0;

0 0 —(mlxg)/M 0 —(m2*g)/M 0;
00010 0;
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2.7 Question G - Linear FINAL PROJECT
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0 0 -((M+m1)*g)/(M*11) 0 -(m2*g)/(Mx11) O;

000O00O01;

0 0 -(mlxg)/(Mx12) 0 -(g*x(M+m2))/(Mx12) 0];
A = double(subs(A, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));
B=[0; 1/M; 0; 1/(Mx11); 0; 1/(M*12)];

B = double(subs(B, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));

Cl=[100000];

C2=[001000; 00001 0];
C3=[100000; 0O00O010];
C4=[100000;001000; 000010];
D = 0;

Q=[10000 0 0 0 O O;
0 1000 0 0 O O;
0 0 100 0 0 O;
100 0
0 1000
0 0 100

>

’

O O O
O O O
o O O

0;
]
R = 0.05;
new_poles=[-0.1;-0.3;-0.5;-0.7;-0.9;-1.1];
K=1qr(A,B,Q,R);

x_initial = [0, O, pi/4, O, pi/3, 0, 0, 0, O, O, O, 0];

Vd = 0.1xeyex*(6);
Vn = 0.5;

K_C1 = 1qr(A’, C1’, Vd, Vn)’;

sys_repl = ss([(A-B*K) B*K; zeros(size(A)) (A-K_C1xC1)], [B;zeros(size(B))],[Cl zeros(size(C1))], D);
figure

initial(sys_repl,x_initial)

figure

step(sys_repl)

K_C3 = 1qr(A’, C3°, Vd, Vn)’;

sys_rep3 = ss([(A-B*K) B*K; zeros(size(A)) (A-K_C3%C3)], [B;zeros(size(B))],[C3 zeros(size(C3))], D);
figure

initial(sys_rep3,x_initial)

figure

step(sys_rep3)

K_C4 = 1qr(A’, C4°, Vd, Vn)’;

sys_rep4d = ss([(A-B*K) B*K; zeros(size(A)) (A-K_C4xC4)], [B;zeros(size(B))],[C4 zeros(size(C4))], D);
figure

initial(sys_rep4,x_initial)
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2.7 Question G - Linear FINAL PROJECT
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figure
step(sys_rep4)

clear
clc

syms M m1 m2 11 12 g;

A=[0 1 0 0 0 0;

0 0 —(mlxg)/M 0 —(m2*g)/M O;

00010 0;

0 0 -((M+m1)*g)/(Mx11) O -(m2*g)/(Mx11) O;
000O00O0T1;

0

0 -(mixg)/(Mx12) O -(g*x(M+m2))/(M*12) 0];
B=[0; 1/M; 0; 1/(M*x11); 0; 1/(Mx12)];

A

double(subs(A, {M, ml, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));

B

double(subs(B, {M, mi, m2, 11, 12, g}, {1000, 100, 100, 20, 10, 9.8}));

M=1000;
m1=100;
m2=100;
11=20;
12=10;
g=9.81;

Q=[10 0 0 0 0 O;
0 100 0 0 0 O;

initial_x = [0; O; pi/6; O; pi/4; 0; 0; 0; 0; 0; 0; 0];
tspan = 0:0.1:5000;

[final_t, final_x] = ode45(@(t, x)cart_system(x, M, ml, m2, 11, 12, g, A, B, Q, R), tspan, initial_x)
hold on

plot(final_t, final_x)

% ylim([-5, 51)

xlabel ("time");

ylabel("States")

legend(’x’, ’v’, ’thetal’, ’angularl’, ’theta2’, ’angular2’)

hold off

function dx = cart_system(x, M, ml, m2, 11, 12, g, A, B, Q, R)
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2.7 Question G - Linear FINAL PROJECT
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Cl=[100000;000000;000000];

[K, =, 1 = 1qr(A,B,Q,R);
F=-K*x(1:6);

Vd=0.1x%eye(6) ;
Vn=5;
Kp = 1qr(A’,C1’,Vd,Vn)’;

S =(A-Kp*C1)*x(7:12);

dx=zeros(12,1);

dx(1) = x(2);

dx (2)=(F-(g/2) * (m1*sind (2%x(3) ) +m2*sind (2*x(5))) - (m1*11* (x(4) "2) *sind (x(3))) - (m2%12* (x(6) "2) *sind (x (E
dx(3)= x(4);

dx(4)= (dx(2)*cosd(x(3))-gx(sind(x(3))))/11°;
dx(5)= x(6);

dx(6)= (dx(2)*cosd(x(5))-gx(sind(x(5))))/12;
dx(7)= x(2)-x(10);

dx(8)= dx(2)-S(2);

dx(9)= x(4)-x(11);

dx(10)= dx(4)-S(4);

dx(11)= x(6)-x(12);

dx(12)= dx(6)-S(6);

end
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